Numerical study of an electrowetting liquid microlens
نویسندگان
چکیده
منابع مشابه
Electrowetting on a polymer microlens array.
This paper reports on the electrowetting behavior of a flexible poly(dimethylsiloxane) (PDMS) microlens array. A Cr and Au double-layered electrode was formed on an array of microlenses with diameters of 10 microm and heights of 13 microm. A deposition of parylene and a coating of Teflon were followed for electrical insulation as well as for enhancement of the hydrophobicity. On the nearly supe...
متن کاملFabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens
We present a flexible variable-focus converging microlens actuated by electrowetting on dielectric (EWOD). The microlens is made of two immiscible liquids and a soft polymer, polydimethylsiloxane (PDMS). Parylene intermediate layer is used to produce robust flexible electrode on PDMS. A low-temperature PDMS-compatible fabrication process has been developed to reduce the stress on the lens struc...
متن کاملElectrowetting-driven variable-focus microlens on flexible surfaces.
We demonstrate a flexible, electrowetting-driven, variable-focus liquid microlens. The microlens is fabricated using a soft polymer polydimethylsiloxane. The lens can be smoothly wrapped onto a curved surface. A low-temperature fabrication process was developed to reduce the stress on and to avoid any damage to the polymer. The focal length of the microlens varies between -15.0 mm to +28.0 mm, ...
متن کاملHermaphroditic liquid-crystal microlens.
We demonstrate a flat microlens that exhibits hermaphroditic focusing properties. When the input polarization is parallel (perpendicular) to the liquid-crystal directors, the lens exhibits a positive (negative) focal length. To select the proper polarization, we could rotate the polarizer (or the lens) mechanically or by use of an electrically controlled twisted nematic liquid-crystal cell. Det...
متن کاملFast-Response Liquid Crystal Microlens
Electrically tunable liquid crystal microlenses have attracted strong research attention due to their advantages of tunable focusing, voltage actuation, low power consumption, simple fabrication, compact structure, and good stability. They are expected to be essential optical devices with widespread applications. However, the slow response time of nematic liquid crystal (LC) microlenses has bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2018
ISSN: 2158-3226
DOI: 10.1063/1.5049385